Asymmetric Total Synthesis of Stagonolide G

by Dasari Ramesh, Singanaboina Rajaram, Peddikotla Prabhakar, Udugu Ramulu, Dorigondla Kumar Reddy, and Yenamandra Venkateswarlu*

Natural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad-500007, India

(phone: +91-40-27193167; fax: +91-40-27160512; e-mail: luchem@iict.res.in)

A simple asymmetric total synthesis of stagonolide G (1) is described. Asymmetric dihydroxylation, regioselective epoxide ring opening, and vinyl *Grignard* reactions are involved in generating the stereogenic centers C(4) and C(8), followed by *Grubbs-II*-catalyzed ring-closing metathesis (RCM).

Introduction. – Naturally occurring macrolides, particularly ten-membered-ringcontaining lactones have continued to attract synthetic chemists as well as biologists during recent years [1], due to their interesting structural properties and potent biological activities [2]. Owing to the scarce availability of these macrolides, only few of them were evaluated for biological activity. Some examples, mainly ten-membered macrolides such as putaminoxin and pinolidoxin displayed potent biological activities [3]. The main metabolite, stagonolide A shows phytotoxic property [4], and stagonolide F exhibits antibacterial and antifungal activity [5a,b]. Stagonolides G-I, nonenolides were produced by *Stagonopora crisis* DAVIS, which is a fungal pathogen isolated from *Cirsium arvense* and proposed as a potential mycoherbicide of this perennial noxious weed, and produces phytotoxic metabolites in liquid and solid cultures [5c].

Biological properties and interesting structural features, such as geometrically defined C=C bonds and with established configurations of OH-carrying centers render stagonolides as significant synthetic targets. In continuation of our studies towards total synthesis of lactone-containing molecules [6], we have synthesized ten-membered macrolides, such as stagonolide A [6c], stagonolide B [6c], and herbarumin I [6d], and we were subsequently interested in a concise synthesis of stagonolide G (1; *Fig.*). In this article, we report a simple synthesis of stagonolide G (1), and while we were working on the synthesis of 1, the first stereoselective synthesis of 1 has been reported [7].

Figure. Structure of stagonolide G

© 2011 Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – The retrosynthetic analysis of stagonolide G (1) is outlined in *Scheme 1*. Compound 1 can be obtained from diene ester 15 by ring-closing methathesis (RCM) protocol, a key reaction strategy that has been widely used for the synthesis of macrolides. Furthermore, compound 15 in turn can be obtained by *Steglich* esterification of acid 14 and alcohol 6. The intermediate 6 is envisaged from (+)-(R)-glyceraldehyde, and intermediate 14 can be easily prepared from commercially available pent-4-en-1-ol. Thus, in the present strategy, the two stereogenic centers C(4) and C(8) (*Fig.*) are constructed: one by dihydroxylation on 7 (*cf. Scheme 3*, below) and the second by vinyl *Grignard* reaction on 2 (*cf. Scheme 2*, below), leading to (4*S*)- and (8*R*)-configurations.

As outlined in *Scheme 2*, intermediate **6** was prepared from (+)-(R)-2,3-di-*O*-cyclohexylideneglyceraldehyde **2** [8]. The aldehyde **2** was reacted with CH₂=CHMgBr in THF to give an inseparable mixture of alcohols in a ratio of 1:1 [9]. Benzylation of the secondary alcohol with BnBr in the presence of NaH in THF afforded compound **3**, and the required isomer was separated by column chromatography. The hexylidene protecting group in **3** was removed by using *Dowex* H⁺ resin in MeOH to give the diol **4**

a) 1. CH₂=CHMgBr, THF, -78°, 2 h; 89%; 2. NaH, BnBr, THF, 0° to r.t., 4 h; 41% (separation of isomers). *b*) *Dowex H*⁺ resin, MeOH, r.t., 20 h; 91%. *c*) Et₃N, TsCl, Bu₂SnO, CH₂Cl₂, r.t., 4 h; 92%. *d*) LiAlH₄, THF, reflux, 1 h; 86%.

[10]. The primary OH group in **4** was selectively protected with TsCl/Et₃N in the presence of Bu₂SnO in dry CH₂Cl₂ to afford the tosyl derivative **5** in 92% yield. The latter was reduced with LiAlH₄ in THF to provide the key intermediate **6** for the synthesis of stagonolide G (**1**).

The pent-4-en-1-ol was protected with 'BuMe₂SiCl (TBS–Cl) to give compound 7, and the asymmetric dihydroxylation of the terminal olefine in 7 with *AD-mix-a* ($K_2OsO_2(OH)_4$, $K_3Fe(CN)_6$, K_2CO_3 , hydroquinine phthalazine-1,4-diyl diether ((DHQ)₂PHAL)) at 0° furnished diol 8 [11], which was further subjected to monotosylation in the presence of a catalytic amount of Bu₂SnO to give 9; the subsequent exposure to K_2CO_3 afforded epoxide 10 (*Scheme 3*). The regioselective ring opening of 10 with CH₂=CHMgBr in the presence of CuI yielded alcohol 11 [12], which was protected with BnBr using NaH to furnish compound 12. Deprotection of 'BuMe₂Si group in 12 afforded 13, which was oxidized with [bis(acetoxy)iodo]benzene (BAIB) to give 14 [13].

a) 1*H*-Imidazole, 'BuMe₂SiCl, CH₂Cl₂, r.t., 3 h; 93%. *b*) *AD-mix-* α (K₂OsO₂(OH)₄, K₃Fe(CN)₆, K₂CO₃, hydroquinine phthalizine-1,4-diyl diether ((DHQ)₂PHAL)), 'BuOH/H₂O 1:1, 0°, 24 h; 94%. *c*) Et₃N, TsCl, Bu₂SnO, CH₂Cl₂, r.t., 4 h; 91%. *d*) K₂CO₃, MeOH, r.t., 2 h; 89%. *e*) CH₂=CHMgBr, CuI, THF, – 78°, 3 h; 86%. *f*) NaH, BnBr, THF, 0° to r.t., 4 h; 93%. *g*) 'Bu₄NF, THF, r.t., 3 h; 92%. *h*) [Bis(acetoxy)iodo]benzene (BAIB), 2,2,6,6-tetramethylpiperidin-1-yl oxide (TEMPO), MeCN/H₂O 2:1, r.t., 3 h; 84%. *i*) Dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine (DMAP), CH₂Cl₂, 0°, 12 h; 83%; see also [7]. *j*) *Grubbs-II* catalyst, CH₂Cl₂, 40°, 3 h; 88%; see also [7]. *k*) TiCl₄, CH₂Cl₂, 0°, 3 h; 73%; see also [7].

The acid **14** was esterified with the alcohol **6** in the presence of dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP) at 0° to provide the diene ester **15** in 83% yield, which was subjected to RCM using *Grubbs-II* catalyst to afford the doubly benzyl-protected macrolide **16**. Deprotection of the Bn groups was achieved with TiCl₄ in CH₂Cl₂ at 0° to provide the natural product stagonolide G (**1**; *Scheme 3*) in

1228

73% yield. The spectroscopic data of synthetic stagonolide G (1) are identical to those of the natural product reported in [5b].

Conclusions. – We have reported a simple and concise total synthesis of stagonolide G (1). This protocol involves an asymmetric dihydroxylation, regioselective epoxide ring opening, *Grignard* reaction and *Grubbs-II*-catalyzed ring-closing metathesis as key steps. The synthesis and biological evaluation of structurally related macrolides are in progress in our laboratory.

The authors are thankful to *CSIR*, New Delhi, India, for the financial support, and Dr. J. S. Yadav, Director, Indian Institute of Chemical Technology (IICT), for his encouragement.

Experimental Part

General. Solvents were dried over standard drying agents and freshly distilled prior to use. The reagents were purchased from *Aldrich* and *Acros*, and were used without further purification unless otherwise stated. All moisture-sensitive reactions were carried out under N₂. Org. solns. were dried (anh. Na₂SO₄) and concentrated *in vacuo* below 40°. Column chromatography (CC): silica gel (SiO₂, *Acme*'s 60–120 mesh and 100–200 mesh). Optical rotations: *Horiba* high-sensitive polarimeter *SEPA-300* at 25°. IR Spectra: *Perkin–Elmer IR-683* spectrophotometer with NaCl optics; $\tilde{\nu}$ in cm⁻¹. ¹H- (300 MHz) and ¹³C-NMR (75 MHz) spectra: *Bruker Avance 300* instrument, in CDCl₃; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. ESI-MS: *Agilent Technologies 1100 Series* (*Agilent* Chemistation Software); in *m/z*.

(2R)-2-[(1R)-1-(Benzyloxy)prop-2-enyl]-1,4-dioxaspiro[4.5]decane (3). To a soln. of (+)-(R)-2,3-(2R)-2-[(1R)-1-(R)-2,3-(2R)-2-(2R)di-O-cyclohexylideneglyceraldehyde (2; 1.5 g, 8.82 mmol) in dry THF was added 1.0M CH2=CHMgBr soln. (13.2 ml, 13.2 mmol) in THF at -78° . The mixture was stirred at the same temp. for 2 h and allowed to reach r.t. After completion, the reaction was quenched with sat. NH₄Cl soln. (150 ml), and the resulting mixture was extracted with AcOEt $(2 \times 75 \text{ ml})$. The combined org, phases were washed with brine and dried (anh. Na₂SO₄). The solvent was removed under reduced pressure to give an inseparable mixture of alcohols in a ratio of 1:1 (1.55 g). The crude product was then used for the next step without any purification. To a soln. of the crude alcohol mixture (1.3 g, 6.56 mmol) in dry THF (20 ml) was added NaH (0.52 g, 13.13 mmol) at 0° , and the mixture was stirred for 10 min at the same temp. To this, BnBr (0.78 ml, 6.56 mmol) was added at 0° and stirred at r.t. for 4 h. After completion of the reaction, the mixture was diluted with H_2O (100 ml) and extracted with AcOEt (2 × 75 ml), dried (anh. Na₂SO₄), and concentrated under reduced pressure. The crude residue was purified by CC (SiO₂; hexane/AcOEt 9.8:0.2) to give pure **3** (0.77 g, 41%). Colorless liquid. $R_{\rm f}$ (hexane/AcOEt 4:1) 0.8. $[\alpha]_{25}^{25} = -18.5$ (c = 0.49, CHCl₃). IR (neat): 2933, 2859, 1449, 1099, 929. ¹H-NMR: 1.39 (br. s, 2 H); 1.56 (br. s, 8 H); 3.66-3.94 (*m*, 3 H); 4.11-4.19 (*m*, 1 H); 4.55 (*AB*, *J*=12.8, 2 H); 5.26-5.36 (*m*, 2 H); 5.64-5.80 (*m*, 1 H); 7.20-7.41 (*m*, 5 H). ¹³C-NMR: 23.68; 23.85; 25.03; 34.75; 36.01; 65.24; 70.15; 76.97; 80.95; 119.82; 127.35; 127.61; 128.14; 134.13; 138.21. ESI-MS: 306 ($[M + NH_4]^+$).

(2R,3R)-3-(*Benzyloxy*)*pent-4-ene-I,2-diol* (**4**). To a soln. of **3** (0.6 g, 2.08 mmol) in MeOH (15 ml) was added *Dowex H*⁺ resin (5 g), and the mixture was stirred at r.t. for 20 h. After completion of reaction, the mixture was filtered, and MeOH was evaporated under reduced pressure to afford a crude product, which was purified by CC (hexane/AcOEt 70:30) to afford pure **4** (390 mg, 91%). Colorless liquid. $[\alpha]_D^{25} = -36.92$ (c = 0.25, CHCl₃). IR (neat): 3426, 2924, 2852, 1637, 1067. ¹H-NMR: 3.12 (br. *s*, 1 H); 3.43 – 3.68 (*m*, 3 H); 3.76 – 3.85 (*m*, 1 H); 4.46 (*AB*, *J* = 11.5, 2 H); 5.30 – 5.43 (*m*, 2 H); 5.67 – 5.83 (*m*, 1 H); 7.20 – 7.37 (*m*, 5 H). ¹³C-NMR: 62.98; 70.43; 73.68; 81.33; 120.61; 127.85; 127.94; 128.47; 134.57; 137.72. ESI-MS: 226 ($[M + NH_4]^+$).

(2R,3R)-3-(Benzyloxy)-2-hydroxypent-4-en-1-yl 4-Methylbenzenesulfonate (5). To a soln. of 4 (350 mg, 1.68 mmol), Bu₂SnO (41 mg, 0.168 mmol), and Et₃N (0.23 ml, 1.68 mmol) in dry CH₂Cl₂ was added TsCl (320 mg, 1.68 mmol) at 0° under N₂, and the mixture was stirred for 4 h at r.t. After completion, the reaction was quenched with NaHCO₃ soln. (50 ml), and the mixture was extracted with

CH₂Cl₂ (2 × 25 ml). The org. extract was washed with brine, dried (anh. Na₂SO₄), and the solvent was removed under reduced pressure. The crude residue was purified by CC (hexane/AcOEt 9:1) to yield pure **5** (560 mg, 92%). Colorless liquid. $R_{\rm f}$ (hexane/AcOEt 7:3) 0.7. $[a]_{\rm D}^{25} = -16.6$ (c = 0.32, CHCl₃). IR (neat): 3459, 2924, 2851, 1637, 1360, 1176. ¹H-NMR: 2.44 (s, 3 H); 3.68–3.77 (m, 1 H); 3.82–3.89 (m, 1 H); 3.94–4.11 (m, 2 H); 4.43 (AB, J = 11.3, 2 H); 5.31–5.40 (m, 2 H); 5.70–5.83 (m, 1 H); 7.20–7.34 (m, 7 H); 7.73–7.79 (m, 2 H). ¹³C-NMR: 21.58; 69.88; 70.60; 71.44; 79.74; 120.84; 127.88; 127.94; 128.43; 129.80; 133.85; 137.46; 144.84. ESI-MS: 380 ($[M + NH_4]^+$).

(2R,3R)-3-(*Benzyloxy*)pent-4-en-2-ol (**6**). To a soln. of **5** (500 mg, 1.38 mmol), in dry THF (5 ml) was added LiAlH₄ (76 mg, 2.07 mmol), and the mixture was heated to reflux for 1 h. After completion of the reaction (TLC), the mixture was cooled to r.t., diluted with H₂O (100 ml), and extracted with AcOEt (3 × 30 ml). The combined org. layer was dried (anh. Na₂SO₄), and the solvent was removed under reduced pressure to afford a crude compound. The crude residue was purified by CC (hexane/AcOEt 9.4:0.6) to give pure **6** (228 mg, 86%). Colorless liquid. R_f (hexane/AcOEt 9:1) 0.5. $[a]_{D}^{25} = -48.6$ (c = 0.14, CHCl₃). IR (neat): 3448, 2977, 2928, 2870, 1453, 1259, 1068. ¹H-NMR: 1.12 (d, J = 6.3, 3 H); 2.66 (br. s, 1 H); 3.50 (t, J = 7.9, 1 H); 3.62 – 3.73 (m, 1 H); 4.47 (AB, J = 11.5, 2 H); 5.28 – 5.39 (m, 2 H); 5.63 – 5.76 (m, 1 H); 7.22 – 7.37 (m, 5 H). ¹³C-NMR: 18.12; 69.50; 70.34; 85.99; 120.23; 127.68; 127.86; 128.38; 135.10; 137.95. ESI-MS: 215 ($[M + Na]^+$).

(tert-*Butyl*)(*dimethyl*)(*pent-4-en-1-yloxy*)silane (**7**). To a soln. of the pent-4-en-1-ol (1 g, 11.62 mmol) in dry CH₂Cl₂ (20 ml) was added 1*H*-imidazole (1.18 g, 17.44 mmol), and the mixture was stirred for 10 min at 0°. To this soln., 'BuMe₂SiCl (2.1 g, 13.95 mmol) was added at 0°, and the mixture was stirred at r.t. for 3 h. After completion of the reaction, the mixture was diluted with H₂O, extracted with AcOEt (2 × 50 ml), dried (anh. Na₂SO₄), and concentrated under reduced pressure. The crude residue was purified by CC (hexane/AcOEt 9.9:0.1) to give pure **7** (2.16 g, 93%). Pale yellow liquid. *R_f* (hexane/AcOEt 9:1) 0.9. $[a]_{D}^{25} = -5.43$ (c = 0.53, CHCl₃). IR (neat): 2930, 2858, 1642, 1472, 1255, 1101. ¹H-NMR: 0.03 (s, 6 H); 0.89 (s, 9 H); 1.53–1.66 (m, 2 H); 2.03–2.18 (m, 2 H); 3.54–3.66 (m, 2 H); 4.89–5.04 (m, 2 H); 5.69–5.87 (m, 1 H). ¹³C-NMR: – 5.18; 26.09; 30.16; 32.08; 62.31; 114.79; 138.30. ESI-MS: 202 ($[M+H]^+$).

(2S)-5-*[[*(tert-*Butyl*)(*dimethyl*)*silyl*]*oxy*]*pentane-1,2-diol* (**8**). To a cooled (0°) soln. of **7** (2.1 g, 10.5 mmol) in 'BuOH/H₂O 1:1 (100 ml) was added *AD-mix-a* (K₂OsO₂(OH)₄, K₃Fe(CN)₆, K₂CO₃, (DHQ)₂PHAL; 13 g), and the mixture was stirred at the same temp. for 24 h. To this mixture, Na₂SO₃ (15 g) was added, and the mixture was stirred for 30 min and then filtered. The org. layer was separated, and the aq. layer was extracted with AcOEt (3 × 75 ml). The combined org. layer was dried (anh. Na₂SO₄) and concentrated under reduced pressure. The residue was purified by CC (SiO₂; hexane/AcOEt 7:3) to afford pure **8** (2.3 g, 94%). Colorless liquid. *R*_f (hexane/AcOEt 7:3) 0.2. $[a]_{25}^{25} = -5.55$ (*c* = 0.45, MeOH). IR (neat): 3383, 2931, 2859, 1466, 1254, 1096. ¹H-NMR: 0.04 (*s*, 6 H); 0.88 (*s*, 9 H); 1.41 – 1.69 (*m*, 4 H); 2.82 (br. *s*, 1 H); 3.32 – 3.45 (*m*, 1 H); 3.50 – 3.71 (*m*, 4 H); 4.01 (br. *s*, 1 H). ¹³C-NMR: -5.32; 25.98; 29.09; 30.57; 63.44; 66.76; 71.94. ESI-MS: 235 ($[M+H]^+$).

(2S)-5-{[(tert-Butyl)(dimethyl)sily]/oxy]-2-hydroxypentyl 4-Methylbenzenesulfonate (**9**). To a soln. of **8** (2.2 g, 9.40 mmol), Bu₂SnO (234 mg, 0.94 mmol), and Et₃N (1.7 ml, 10.3 mmol) in dry CH₂Cl₂ was added TsCl (1.79 g, 9.4 mmol) at 0° under N₂, and the mixture was stirred for 4 h at r.t. After completion of the reaction, the mixture was diluted with sat. NaHCO₃ soln. and extracted with CH₂Cl₂ (2 × 75 ml). The org. extract was washed with H₂O and dried (anh. Na₂SO₄). The solvent was removed under reduced pressure to afford a crude product. The residue was purified by CC (SiO₂; hexane/AcOEt 8.4:1.6) to afford pure **9** (3.31 g, 91%). Colorless liquid. *R*_f (hexane/AcOEt 7:3) 0.6. [*a*]₂^D = +2.1 (*c* = 0.48, CHCl₃). IR (neat): 3423, 2924, 1634, 1352, 1175. ¹H-NMR: 0.04 (*s*, 6 H); 0.87 (*s*, 9 H); 1.39 – 1.73 (*m*, 4 H); 2.46 (*s*, 3 H); 3.11 (br. *s*, 1 H); 3.59 – 3.67 (*m*, 2 H); 3.75 – 3.87 (*m*, 1 H); 3.88 – 3.98 (*m*, 2 H); 7.34 (*d*, *J* = 8.3, 2 H). ¹³C-NMR: – 5.41; 21.7; 25.94; 28.66; 30.62; 63.26; 69.14; 73.53; 127.94; 129.80; 132.76; 144.83. ESI-MS: 389 ([*M* + H]⁺).

(tert-Butyl)(dimethyl)[3-[(2S)-oxiran-2-yl]propoxy]silane (10). To a stirred soln. of 9 (3.2 g, 8.24 mmol) in dry MeOH (15 ml) was added K₂CO₃ (2.28 g, 16.49 mmol) under N₂, and the mixture was stirred for 2 h. After completion of the reaction, MeOH was removed under reduced pressure. The residue was diluted with H₂O (100 ml) and extracted with CH₂Cl₂ (2 × 100 ml). The combined org. phases were washed with H₂O and brine, and dried (anh. Na₂SO₄). After evaporation of the solvent, the

crude residue was purified by CC (SiO₂; hexane/AcOEt 9.6 :0.4) to give pure **10** (1.58 g, 89%). Colorless liquid. $R_{\rm f}$ (hexane/AcOEt 4:1) 0.8. $[\alpha]_{D}^{25} = -4.3$ (c = 0.19, CHCl₃). IR (neat): 1252, 1098, 835, 773. ¹H-NMR: 0.04 (s, 6 H); 0.88 (s, 9 H); 1.51 – 1.72 (m, 4 H); 2.44 – 2.48 (m, 1 H); 2.73 (t, J = 4.0, 1 H); 2.88 – 2.95 (m, 1 H); 3.58 – 3.70 (m, 2 H). ¹³C-NMR: – 5.38; 25.89; 28.97; 29.08; 47.01; 52.07; 62.54. ESI-MS: 217 ($[M + H]^+$).

(4S)-7-{[(tert-*Butyl*)(*dimethyl*)*sily*]*joxy*]*hept-1-en-4-ol* (**11**). To a cooled (-78°) soln. of CuI (0.12 g, 0.65 mmol) in dry THF (5 ml) was added 1.0M CH₂=CHMgBr soln. (16.2 ml, 16.2 mmol) in THF. To this soln. was added **10** (1.4 g, 6.48 mmol) in dry THF (15 ml), and the mixture was stirred at the same temp. for 3 h and allowed to reach r.t. After completion, the reaction was quenched with sat. NH₄Cl soln. (50 ml), and the mixture was extracted with AcOEt (3×50 ml). The combined org. phases were washed with H₂O and brine, and dried (anh. Na₂SO₄). The solvent was removed under reduced pressure, and the crude residue was purified by CC (SiO₂; hexane/AcOEt 9.4:0.6) to give pure **11** (1.36 g, 86%). Pale yellow liquid. *R*_f (hexane/AcOEt 90:10) 0.5. [*a*]²⁵_D = -27.10 (*c* = 0.24, CHCl₃). IR (neat): 3422, 2931, 2858, 1640, 1253, 1098, 835. ¹H-NMR: 0.05 (*s*, 6 H); 0.90 (*s*, 9 H); 1.40–1.70 (*m*, 4 H); 2.11–2.30 (*m*, 2 H); 2.40 (br. *s*, 1 H); 3.57–3.69 (*m*, 3 H); 5.03–5.16 (*m*, 2 H); 5.73–5.91 (*m*, 1 H). ¹³C-NMR: -5.42; 25.88; 29.06; 33.80; 41.85; 63.38; 70.55; 117.43; 135.05. ESI-MS: 245 ([*M*+H]⁺).

 ${(4S)-[4-(Benzyloxy)hept-6-en-1-yl]oxy](tert-butyl)(dimethyl)silane (12). To a cooled (0°) soln. of 11 (1.2 g, 4.91 mmol) in dry THF (20 ml) was added NaH (0.39 g, 9.83 mmol) at 0°, and the mixture was stirred for 10 min. To this mixture, BnBr (0.59 ml, 4.91 mmol) was added and stirred at r.t. for 4 h. After completion of the reaction, the mixture was diluted with H₂O (100 ml), extracted with AcOEt (2 × 75 ml), dried (anh. Na₂SO₄), and concentrated under reduced pressure. The crude residue was purified by CC (SiO₂; hexane/AcOEt 9.7:0.3) to afford pure 12 (1.52 g, 93%). Colorless liquid. <math>R_f$ (hexane/AcOEt 9:1) 0.8. $[a]_{25}^{25} = -9.04$ (c = 0.31, CHCl₃). IR (neat): 2931, 2858, 1252, 1095. ¹H-NMR: 0.03 (s, 6 H); 0.89 (s, 9 H); 1.48–1.71 (m, 4 H); 2.23–2.42 (m, 2 H); 3.41–3.52 (m, 1 H); 3.55–3.63 (m, 2 H); 4.52 (AB, J = 11.3, 2 H); 5.01–5.15 (m, 2 H); 5.74–5.94 (m, 1 H); 7.28–7.41 (m, 5 H). ¹³C-NMR: -5.28; (M + H]⁺).

(4S)-4-(*Benzyloxy*)*hept-6-en-1-ol* (13). To a soln. of 12 (1.4 g, 4.19 mmol) in dry THF (15 ml) was added 1m 'Bu₄NF soln. (4.19 ml) in THF, and the mixture was stirred for 3 h at r.t. After completion, the reaction was quenched with sat. NaHCO₃ soln. (100 ml), and the mixture was extracted with AcOEt (2 × 50 ml), the org. layer was washed with brine, dried (anh. Na₂SO₄), and concentrated under reduced pressure. The crude residue was purified by CC (SiO₂; hexane/AcOEt 4:1) to yield pure 13 (850 mg, 92%). Colorless liquid. $R_{\rm f}$ (hexane/AcOEt 7:3) 0.3. $[a]_{\rm D}^{25} = -12.96$ (c = 0.24, CHCl₃). IR (neat): 3401, 2934, 2865, 1449, 1060. ¹H-NMR: 1.51 – 1.75 (m, 4 H); 2.23 – 2.48 (m, 2 H); 3.43 – 3.52 (m, 1 H); 3.54 – 3.61 (m, 2 H); 4.53 (AB, J = 11.5, 2 H); 5.01 – 5.13 (m, 2 H); 5.72 – 5.92 (m, 1 H); 7.27 – 7.38 (m, 5 H). ¹³C-NMR: 28.19; 29.87; 37.81; 62.13; 70.57; 78.10; 116.80; 127.24; 127.47; 128.02; 134.39; 138.21. ESI-MS: 221 ($[M + H]^+$).

(4S)-4-(*Benzyloxy*)*hept-6-enoic* Acid (14). To a soln. of 13 (750 mg, 3.40 mmol) in MeCN/H₂O 2 : 1 (10 ml) were added [bis(acetoxy)iodo]benzene (BAIB; 2.41 g, 7.49 mmol) and 2,2,6,6-tetramethylpiperidin-1-yl oxide (TEMPO; 106 mg, 0.68 mmol). The mixture was stirred at r.t. for 3 h. After completion of the reaction (TLC), the mixture was filtered and extracted with AcOEt (2 × 25 ml). The combined org. phases were dried and concentrated under reduced pressure. The crude residue was purified by CC (SiO₂; hexane/AcOEt 7.8 : 2.2) to give pure 14 (660 mg, 84%). Pale yellow liquid. R_f (hexane/AcOEt 7:3) 0.25. $[a]_{25}^{25} = -26.7$ (c = 0.32, CHCl₃). IR (neat): 3428, 2928, 1707, 1447, 1072, 916, 739. ¹H-NMR: 1.72–1.96 (m, 2 H); 2.21–2.48 (m, 4 H); 3.43–3.54 (m, 1 H); 4.51 (AB, J = 11.3, 2 H); 5.03–5.13 (m, 2 H); 5.72–5.88 (m, 1 H); 7.20–7.34 (m, 5 H). ¹³C-NMR: 28.50; 29.90; 37.95; 70.82; 77.0; 117.34; 127.41; 127.60; 128.17; 134.05; 138.21; 179.83. ESI-MS: 257 ([M + Na]⁺).

(2R,3R)-3-(Benzyloxy)pent-4-en-2-yl (4S)-4-(Benzyloxy)hept-6-enoate (15). To a cooled (0°) soln. of 6 (180 mg, 0.937 mmol), DCC (386 mg, 1.874 mmol), and DMAP (11 mg, 0.093 mmol) in dry CH₂Cl₂ (5 ml) was added 14 (219 mg, 0.937 mmol), and the mixture was stirred at same temp. for 12 h. After completion of the reaction (TLC), the mixture was diluted with H₂O (25 ml) and extracted with CH₂Cl₂ (2 × 15 ml). The combined org. phases were dried and concentrated under reduced pressure. The crude residue was purified by CC (SiO₂; hexane/AcOEt 9.6:0.4) to afford pure 15 (317 mg, 83%). Liquid. R_f (hexane/AcOEt 9 :1) 0.6. $[a]_{25}^{15} = -26.94$ (c = 0.28, CHCl₃). IR (neat): 2923, 2853, 1731, 1636, 1457, 1070, 697. ¹H-NMR: 1.15 (d, J = 6.8, 3 H); 1.69–1.92 (m, 2 H); 2.19–2.41 (m, 4 H); 3.40–3.51 (m, 1 H); 3.71–3.77 (m, 1 H); 4.30–4.64 (m, 4 H); 4.93–5.12 (m, 3 H); 5.24–5.35 (m, 2 H); 5.65–5.87 (m, 2 H); 7.16–7.35 (m, 10 H). ¹³C-NMR: 15.97; 28.97; 30.37; 38.22; 70.36; 71.01; 71.27; 77.40; 81.39; 117.41; 119.50; 127.53; 127.71; 128.32; 134.40; 134.57; 172.88. ESI-MS: 431 ($[M + Na]^+$).

(5\$,7Z,9R,10R)-5,9-Bis(benzyloxy)-10-methyl-3,4,5,6,9,10-hexahydro-2H-oxecin-2-one (**16**). To a soln of **15** (100 mg, 0.245 mmol) in degassed anh. CH₂Cl₂ (250 ml) was added *Grubbs-II* catalyst (42 mg, 0.049 mmol), and the mixture was stirred at 40° for 3 h. After completion, the reaction was quenched with CH₂=CHOEt, and the mixture was concentrated under reduced pressure to afford a dark brown residue. The crude residue was purified by CC (SiO₂; hexane/ACOEt 9.6:0.4) to give pure **16** (82 mg, 88%). Liquid. $R_{\rm f}$ (hexane/ACOEt 9:1) 0.5. $[a]_{\rm D}^{25} = -1.70$ (c = 0.32, CHCl₃). IR (neat): 2931, 2861, 1729, 1451, 1251, 1073. ¹H-NMR: 1.17 (d, J = 6.8, 3 H); 1.76–1.92 (m, 1 H); 1.97–2.13 (m, 1 H); 2.14–2.36 (m, 3 H); 2.39–2.56 (m, 1 H); 3.53–3.64 (m, 1 H); 4.30–4.55 (m, 5 H); 5.01–5.13 (m, 1 H); 5.36–5.47 (m, 1 H); 5.50 (td, J = 11.3, 4.3, 1 H); 7.13–7.32 (m, 10 H). ¹³C-NMR: 13.0; 26.34; 28.50; 32.40; 69.64; 70.28; 71.11; 76.74; 127.30; 127.50; 128.29; 128.90; 131.14; 138.15; 138.53; 173.18. ESI-MS: 403 ($[M + Na]^+$).

Stagonolide G (=(5\$,7Z,9R,10R)-3,4,5,6,9,10-Hexahydro-5,9-dihydroxy-10-methyl-2H-oxecin-2one; **1**). To a soln. of **16** (60 mg, 0.15 mmol) in dry CH₂Cl₂ (5 ml) was added a soln. of TiCl₄ (0.05 ml, 0.47 mmol) in dry CH₂Cl₂ (2 ml) under N₂ at 0°, the mixture was stirred at same temp. for 2 h. After completion of the reaction (TLC), the mixture was diluted with H₂O (50 ml) and extracted with CH₂Cl₂ (2 × 20 ml). The combined org. phases were washed with NaHCO₃ soln., dried, and solvent was removed under reduced pressure. The crude compound was purified by CC (SiO₂; hexane/AcOEt 7:3) to afford pure **1** (23 mg, 73%). Viscous liquid. $R_{\rm f}$ (hexane/AcOEt 7:3) 0.1. $[\alpha]_{\rm D}^{25}$ = +9.8 (c = 0.18, CHCl₃). IR (neat): 3428, 2921, 2852, 1762, 1459, 1370, 760. ¹H-NMR: 1.14 (d, J = 6.4, 3 H); 1.90 – 2.09 (m, 1 H); 2.29 – 2.71 (m, 5 H); 3.65 – 3.72 (m, 1 H); 4.07 – 4.15 (m, 1 H); 4.50 – 4.62 (m, 1 H); 5.55 – 5.73 (m, 2 H). ¹³C-NMR: 18.64; 27.43; 28.75; 33.72; 70.82; 72.22; 79.58; 127.79; 132.51; 176.69. ESI-MS: 201 ([M + H]⁺).

REFERENCES

- [1] I. Shiina, Chem. Rev. 2007, 107, 239.
- [2] J. Piel, Nat. Prod. Rep. 2009, 26, 338; K. C. Nicolaou, J. S. Chen, S. M. Dalby, Bioorg. Med. Chem. 2009, 17, 2290; T. Arif, J. D. Bhosale, N. Kumar, T. K. Mandal, R. S. Bendre, G. S. Lavekar, R. Dabur, J. Asian Nat. Prod. Res. 2009, 11, 621; H. Itokawa, S. L. Morris-Natschke, T. Akiyama, K.-H. Lee, J. Nat. Med. 2008, 62, 263; F. Pietra, Nat. Prod. Rep. 1997, 453.
- [3] A. Evidente, R. Capasso, A. Andolfi, M. Vurro, M. Chiara Zonno, Nat. Toxins 1999, 6, 183.
- [4] O. Yuzikhin, G. Mitina, A. Berestetskiy, J. Agric. Food Chem. 2007, 55, 7707.
- [5] a) A. Evidente, A. Cimmino, A. Berestetskiy, G. Mitina, A. Andolfi, A. Motta, J. Nat. Prod. 2008, 71, 31; b) A. K. Perepogu, D. Raman, U. S. N. Murthy, V. J. Rao, Bioorg. Chem. 2009, 37, 46; c) A. Evidente, A. Cimmino, A. Berestetskiy, A. Andolfi, A. Motta, J. Nat. Prod. 2008, 71, 1897.
- [6] a) K. Rajesh, V. Suresh, J. J. P. Selvam, C. B. Rao, Y. Venkateswarlu, *Synthesis* 2010, 1381; b) V. Shekhar, D. K. Reddy, V. Suresh, D. Chanti Babu, Y. Venkateswarlu, *Tetrahedron Lett.* 2010, *51*, 946; c) P. Prabhakar, S. Rajaram, D. K. Reddy, V. Shekar, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2010, *21*, 216; d) J. J. P. Selvam, K. Rajesh, V. Suresh, D. Chanti Babu, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2009, *20*, 1115; e) D. K. Reddy, V. Shekhar, T. S. Reddy, S. P. Reddy, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2009, *20*, 2315; f) K. Rajesh, V. Suresh, J. J. P. Selvam, C. B. Rao, Y. Venkateswarlu, *Helv. Chim. Acta* 2009, *92*, 1866; g) M. Narasimhulu, A. Sai Krishna, J. V. Rao, Y. Venkateswarlu, *Tetrahedron* 2009, *65*, 2989.
- [7] P. Srihari, B. Kumaraswamy, D. C. Bhunia, J. S. Yadav, Tetrahedron Lett. 2010, 51, 2903.
- [8] A. Chatopadhyay, B. Dhotare, S. Hassarajani, J. Org. Chem. 1999, 64, 6874; J. Jurczak, S. Pikul, T. Bauer, *Tetrahedron* 1986, 42, 447.
- [9] F. Bravo, M. Kassou, S. Castillón, Tetrahedron Lett. 1999, 40, 1187; N. Sarkar, A. Nayek, S. Ghosh, Org. Lett. 2004, 6, 1903; J. Nokami, H. Ogawa, S. Miyamoto, T. Mandai, S. Wakabayashi, J. Tsuji, Tetrahedron Lett. 1999, 29, 5181.

- [10] S. C. Bergmeier, D. M. Stanchina, J. Org. Chem. 1999, 64, 2852.
 [11] H. Takahata, M. Kubota, T. Momose, *Tetrahedron: Asymmetry* 1997, 8, 2801.
 [12] A. Vincent, J. Prunet, Synlett 2006, 2269.
- [13] J. B. Epp, T. S. Widlanski, J. Org. Chem. 1999, 64, 293.

Received November 11, 2010